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Abstract A Lagrangian finite element algorithm is described for solving two-dimensional, time-
dependent free surface fluid flows such as those that occur in industrial printing processes. The
algorithm is applied using a problem specific structured meshing strategy, implemented with
periodic remeshing to control element distortion. The method is benchmarked on the problem of a
stretching filament of viscous liquid, which clearly demonstrates the applicability of the approach to
flows involving substantial free surface deformation. The model printing problem of the transfer of
Newtonian liquid from an upturned trapezoidal trench (3-D cavity with a large transverse aspect
ratio) to a horizontal substrate, which is pulled perpendicularly downwards from the cavity, is
solved computationally using the Lagrangian scheme. The idealized 2-D liquid motion is tracked
from start-up to the point where a thin sheet forms – connecting the liquid remaining in the cavity
to a “sessile” drop on the moving substrate. The effect of varying substrate separation speed is
briefly discussed and predictions are made for approximate drop volumes and “limiting” domain
lengths.

1. Introduction
In a number of industrial printing processes it is necessary to transfer liquids
exhibiting various rheologies from engraved cavities to a substrate in order to
create a liquid pattern on the latter. For example, in both the coating and
printing industries gravure rolls (rolls engraved with tiny cells/cavities) are
used extensively for the deposition of liquid onto a web or other surface prior to
drying, for the production of a wide range of products including: cartons,
packaging systems, plastic films, metal foils and magazine covers. In gravure
printing transfer is direct from tiny cells to a substrate wrapped around a soft
backing roll – giving rise to a pattern of discrete liquid dots. In gravure
coating, however, the liquid transfer mechanism is indirect; liquid, evacuated
from the cells by the action of a passing meniscus (Powell et al., 2000), in turn
supplies a small coating “bead” from which a continuous film of uniform
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thickness is coated to the substrate. Recent experimental studies (eg Benkreira
and Patel (Benkreira and Patel, 1993)) have done much to further our
understanding of the gravure coating process, whilst 2-D finite element (Powell
et al., 2000) and 1-D finite difference (Schwartz et al., 1998) simulations of the
meniscus-driven evacuation of liquid from individual gravure cavities have
further elucidated the process. To date, however, there has been no
corresponding numerical modelling of the gravure printing process to
accompany experimental studies (Kunz, 1983; Piette et al., 1997; Bohan et al.,
2000).

Other common examples of engraved-cavity based printing processes are
pad printing (Collard, 1984), where the relevant transfer of link is from a cavity
to a pad (or tampon) that is pressed downwards against the cavity and then
lifted perpendicularly away, and screen printing (Guthrie, 1992; Mock, 1999), in
which ink is flooded over a screen containing open image areas, and a squeegee
is then drawn across the screen – simultaneously pushing the screen against a
substrate and forcing ink through the open areas. The particular feature of
interest to us in screen printing is the reopening of the gap between screen
and substrate and the subsequent stretching of liquid from the screen image
areas once the squeegee passes. To date there has been no attempt to
computationally simulate liquid transfer in either pad or screen printing.

We note that the problem of drop formation from an orifice, of central
importance to an understanding of ink-jet printing, has – in contrast to the
engraved-cavity based processes mentioned above – received a great deal of
attention both experimental and computational. Indeed, a variety of numerical
approaches have been adopted to simulate drop formation including volume-
of-fluid (VOF) (Zhang, 1999) and an Eulerian finite element method employing
a purpose-designed mesh (Wilkes et al., 1999). These different numerical
approaches have their relative strengths and weaknesses. The VOF method, for
example, does not exhibit a very high degree of accuracy on small scales due to
the use of a fixed mesh, though this is compensated for by the fact that meshing
and logic problems are removed – enabling straightforward simulation of
complicated free surface behaviour.

In the present work we employ of Lagrangian finite element algorithm to
solve the 2-D, time-dependent free surface flows, subject to substantial free
surface deformation, that typically occur in cavity-based printing processes.
Lagrangian finite element analysis is recognised as a very accurate tool for
studying the transient free surface fluid flows that occur in a variety of
engineering applications, including: thin film coating (Bach and Hassager,
1985), sloshing flows (Ramaswamy et al., 1986), industrial metal casting
(Muttin et al., 2001) and wave breaking (Radovitzky and Ortiz, 1998). The major
advantage is the use of a convected computational mesh, which enables simple,
yet very accurate, tracking of the free surfaces – provided, of course, that at
any time a mesh may be generated that discretises the domain effectively. We
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employ a problem specific structured meshing strategy to implement the
Lagrangian algorithm, together with periodic remeshing to control element
distortion. In the next section the method is outlined, with attention drawn to
important features, and then in section 3 the method is benchmarked on the
problem of a stretching liquid filament. As a first step to understanding the
micro-scale liquid transfer processes occurring in cavity-based printing, we
formulate and solve numerically an idealised printing problem in which liquid
is transferred from an upturned trapezoidal cavity to a moving substrate.

2. Lagrangian finite element method
2.1 Governing equations
Denoting a typical velocity by U and a typical length scale by d, then the
non-dimensional equations of momentum and mass conservation for an
incompressible, Newtonian fluid of density r, viscosity m and surface tension t
are written in Eulerian form as:

Re
›u

›t
þ u ·7u

� �
¼ 7 ·sþ Stĝ; ð1Þ

7 · u ¼ 0: ð2Þ

Here u denotes the fluid velocity, ĝ is a unit vector in the direction of gravity
(g ), Re ¼ rUd=m and St ¼ rgd 2=mU are the Reynolds and Stokes numbers,
and the stress tensor, s, is defined by

s ¼ 2pI þ ½7u þ 7uT�: ð3Þ

We use the Lagrangian description of the flow in which the fluid particle
locations, and hence the dependent variables, are functions of some known
initial configuration, x0 (defined at time t0), and the time elapsed. Thus

x ¼ xðx0; t0; tÞ; u ¼ uðx0; t0; tÞ; p ¼ pðx0; t0; tÞ: ð4Þ

The major advantage of this description is that the computational mesh is
identified with the fluid and hence convected with the flow. For free surface
simulations this implies that nodes in the computational discretisation that are
located on a free surface stay there as the fluid domain evolves, and these nodes
are simply found as part of the overall fluid deformation, x ¼ xðx0; t0; tÞ: As a
consequence the location of moving free surfaces and the imposition of
boundary conditions there are rendered straightforward, whereas if one used
the alternative Eulerian description of the fluid it would be necessary to impose
an additional “kinematic” condition to solve for the free surface nodes, e.g. ref.
Wilkes et al., 1999.
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2.2 Boundary conditions
On no-slip boundaries essential velocity conditions are imposed exactly.
Natural free surface conditions are imposed in the standard way (Ruschak,
1980) using the familiar normal stress balance:

n̂ ·s ¼
1

Ca

dt̂

ds
; ð5Þ

where t and n̂ are, respectively, unit vectors tangent and normal to the free
surface, Ca ¼ mU=t is the capillary number, and s denotes length along the
free surface.

Determination of the correct mathematical treatment for a contact line, which
occurs where a free surface meets a solid boundary under dynamic conditions,
is the subject of much theoretical research (see Hocking (1994) and Shikhmurzaev
(1997) for two fundamentally different perspectives on the problem). In terms of
incorporating a contact line into a finite element simulation of flow involving
capillary effects, the two key issues that must be resolved are:

(1) the introduction of local tangential slip near the contact line to remove
the stress singularity that occurs if the usual no-slip conditions are
applied (Dussan, 1976),

(2) the boundary condition at the contact line relating the contact angle to
the independent variables and physical parameters.

In addition a degree of local mesh refinement is required to incorporate the
modeling and accurately resolve the high velocity gradients. A recent paper
(Powell and Savage, 2001) gives the specific numerical details of how this may
be accomplished for the particular choice of a “Tanner law” (Greenspan, 1978)
boundary condition, relating contact angle to contact line speed. An identical
treatment is used for incorporating the moving contact lines in the printing
application presented in this work. The only difference here is the choice of a
constant dynamic contact angle boundary condition, which is imposed by
satisfying the following equation:

t̂b · t̂fs ¼ cos uD; ð6Þ

where uD is the prescribed dynamic contact angle, t̂b is the known tangent to
the solid boundary and t̂fs is the free surface tangent at the contact line, which
may be calculated accurately using the isoparametric element representation.
This equation allows the contact line location to be updated as part of the
overall numerical solution scheme.

2.3 Finite element implementation
The Lagrangian finite element algorithm used to solve the governing
equations, subject to appropriate initial and boundary conditions, has been
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described elsewhere (Powell and Savage, 2001), thus here we only given an
outline. The fluid domain is discretised using isoparametric triangular V6/P3
elements (Zienkiewicz, 1977; Taylor and Hood, 1973), so the velocity
components and pressure are interpolated over an element as:

u ¼
X6

i¼1

Niðx; yÞ�uiðtÞ; v ¼
X6

i¼1

Niðx; yÞ�viðtÞ; p ¼
X3

i¼1

Liðx; yÞ�piðtÞ; ð7Þ

where “–” denotes a nodal value. We apply the Galerkin method to obtain the
finite element equations:

½M�

_U

_V

_P

0
BB@

1
CCAþ ½C�

U

V

P

0
BB@

1
CCA ¼ ðFÞ; ð8Þ

where U ¼ ð�u1; . . .; �u6Þ;V ¼ ð�v1; . . .; �v6Þ;P ¼ ð�p1; �p2; �p3Þ and “ · ” denotes the
material time derivative D/Dt. The matrix M is the mass, or inertia matrix, C is
the diffusion matrix and F contains the gravity and surface tension
contributions [1]. For a given set of element coordinates the matrices M, C and
F may be evaluated using numerical integration; here all domain integrals are
approximated using a 4-point Gaussian scheme and boundary integrals using a
3-point scheme. For time integration we employ a “Q-scheme”:

U

V

P

0
BB@

1
CCA

tþDt

¼

U

V

P

0
BB@

1
CCA

t

þDt Q

_U

_V

_P

0
BB@

1
CCA

tþDt

þð1 2QÞ

_U

_V

_P

0
BB@

1
CCA

t

2
664

3
775 ð9Þ

Q is initially given the value 1, corresponding to a simple backward difference
approximation, then subsequently Q takes a value of 1/2 – thus switching to
the second-order accurate Crank-Nicolson, or trapezoidal, method. This
switching strategy avoids the need for specifying initial conditions on pressure.
In a previous study of surface tension dominated flows (Powell and Savage,
2001) it was noted that changing Q to 1/2 too quickly can introduce significant
inaccuracies into the solution, thus in such flows the switching is delayed for
several time steps. A value for Dt is found heuristically by testing several
different time steps and comparing the solutions.

The iterative solution scheme, used to advance the fluid motion through a
time increment Dt and obtain the new fluid domain and velocity and pressure
fields, is as follows (see refs Bach and Hassager (1985) and Powell and Savage
(2001) for further information):
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(1) Make initial estimates of velocities and coordinates at time t þ Dt:

u1
tþDt ¼ ut; x1

tþDt ¼

xt þ Dtu1
tþDt tstep ¼ 1

xt þ
Dt
2 ðu*

tþDt þ u1
tþDtÞ tstep . 1

8<
: ð10Þ

where tstep is the number of the current time step and u*
tþDt is given by a

two step Adams-Bashforth estimate:

u*
tþDt ¼ ut þ

Dt

2
3

Dut

Dt
2

Dut2Dt

Dt

� �
: ð11Þ

Then starting with n ¼ 1 repeat steps (2)–(4).

(2) Assemble the element equations on configuration xn
tþDt; impose

boundary conditions and solve to find unþ1
tþDt and pnþ1

tþDt; the large
system of linear finite element equations is solved by Gaussian
elimination using Hood’s frontal method (Hood, 1976).

(3) Find a new configuration from:

xnþ1
tþDt ¼ xt þ

Dt

2
unþ1

tþDt þ ut

� �
: ð12Þ

(4) Check for convergence by seeing if xnþ1
tþDt 2 xn

tþDt is less than some
specified tolerance; if not repeat from step (2).

Steps (1)–(4) are repeated until the preassigned total time is reached, or the
simulation reaches steady state.

2.4 Meshing issues
At the end of each time step the amount of mesh deformation is calculated
using the following measure (Bach and Hassager, 1985):

Dp ¼
V p

n
min N JnWn

; ð13Þ

where Jn is the determinant of the transformation Jacobian from local to global
coordinates at the nth Gauss point in element p, Wn is the Gaussian weight for
the nth Gauss point, N is the number of Gauss points and V p ¼

PN
i¼1 J iWi is

the element area. Dp takes its minimum value of 1.0 when element p is
undeformed, but this value grows as the element distorts (becoming infinite if
the Jacobian becomes singular). Our numerical algorithm searches through
each element of the mesh and checks that Dp is less than some maximum
permitted tolerance, if Dp exceeds this limit in one or more elements the
decision is made to remesh.

In a previous application of the present Lagrangian scheme to capillary flow
involving dynamic contact line motion (Powell and Savage, 2001) the free
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surface deformations are not particularly significant and hence the
construction of a structured mesh is not difficult and few remeshings are
required to prevent element distortion. Printing problems, by contrast,
typically involve liquid domains that are subject to severe free surface
deformations thus in order to apply the Lagrangian scheme it is necessary to
either devise more flexible problem specific structured meshes or resort to a
fully automatic unstructured mesh approach. We adopt the former alternative,
and so the fluid domain is initially discretised and then periodically remeshed
using structured meshes of isoparametric triangular V6/P3 elements.

It is worth noting that a great deal of research has been carried out into the
development of unstructured mesh generation and adaptive refinement
algorithms, see, for instance, refs Shephard (1988); Joe (1991); Rebay (1993).
Significant advances in these fields have undoubtably increased the attractions
of Lagrangian finite element analysis to CFD practitioners, since early
Lagrangian-based algorithms were carried out on fixed meshes and could not
cope with large fluid domain deformations. Indeed, in recent years
unstructured meshing algorithms have been incorporated into Lagrangian
finite element simulators in studies of metal casting (Muttin et al., 1993) and
wave breaking (Radovitzky and Ortiz, 1998). However aspects of any fluid
domain meshing procedure invariably remain problem specific, since the
design of a computational mesh represents both a physical as well as a
geometrical problem. Hence adding mesh refinement for special features such
as moving contact lines and sharp boundary corners often requires non-trivial
user interaction even for an unstructured algorithm. Furthermore, serious
programming issues are encountered when an unstructured mesh is used in
conjunction with a highly efficient frontal solution approach such as Hood’s
method (Hood, 1976) which we employ in this study. The task of renumbering
elements and nodes in order to minimize the frontwidth becomes far from
straightforward, and the numbering scheme must be recalculated every time
the mesh is updated. For these reasons in this work we follow the structured
mesh route; details about the mesh structure used for a specific problem are
given in the appropriate place.

Once the new mesh is generated accurate mesh-to-mesh transfer is ensured
by iteratively solving the old element interpolation equations to locate nodes in
the new mesh and then employing the isoparametric mapping (Bach and
Villadsen, 1984). When this is completed the simulation may continue through
another time increment.

3. Validation and applications
3.1 Stretching viscous filament
We consider a stretching (planar) viscous filament, as illustrated in Figure 1. A
quantity of viscous liquid is initially held between two stationary plates, the
top plate is then impulsively pulled perpendicularly away from the bottom
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plate with a constant velocity U. Perfect adherence is assumed between the
liquid and the plates and consequently the filament thins most in its central
region. Stretching filament devices are used in experiments to test the
extensional properties of polymers, and numerical simulations of viscoelastic
fluids often use the stretching filament as a benchmark problem, eg Harlen,
(1996). In the present study inertia effects are assumed to be small
(Re ¼ rUa=m is given a value of 1022), furthermore, gravity, which serves
to create a top-bottom asymmetry in the filament, and surface tension, which
causes an extra squeezing effect in the middle of the filament, are both
neglected. On the plates two no-slip velocity boundary conditions are specified,
and the free surface normal stress balance reduces to:

n̂ ·s ¼ 0: ð14Þ

For simplicity the fluid filament is assumed to have an initially square shape
(with l=a ¼ 1:0), Figure 2 shows the initial finite element mesh containing 200
elements. As the simulation proceeds and the filament stretches the number of
horizontal element strips is increased automatically during remeshing so that
the free surface representation retains a specified level of refinement. Nodes are
equally spaced along the free surfaces, resulting in more element strips in the
regions of high curvature adjacent to the plates. Figure 3 shows the finite
element mesh and the velocity vectors when the aspect ratio is 3.5 and the fluid

Figure 1.
The stretching of a

(planar) viscous fluid
filament
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has undergone considerable deformation; the simulation can be continued
without difficulty until the filament becomes very thin and problems of mesh
resolution are eventually encountered. The mesh shown contains 416 elements
– more than double the initial number. The calculated change in volume for
this simulation is negligible, and the filament is found to be top-bottom
symmetric as predicted in the absence of gravity.

The velocity vectors shown in Figure 3(b) are scaled with respect to the
speed of the top plate; the fluid motion is essentially unidirectional and the
velocities increase linearly with length along the filament.

Figure 4 gives the minimum filament thickness, hmin, as a function of time –
quantities being non-dimensionalised using a and U as typical scales. Initially
hmin decreases quite rapidly but the rate of thinning gradually slows. One may
obtain a simple analytical expression for the evolving free surface position by
assuming that the filament thickness is approximately constant except in the
regions very close to the plates (as suggested by Figure 3). In this case we
assume h is independent of length along the filament, i.e. h ¼ hðtÞ; then
conservation of mass yields the following:

h
›u

›x
þ

dh

dt
¼ 0; ð15Þ

where the velocity u is a function of length along the filament, x, and time.
Taking the plate velocities as approximate conditions on u, imposed at some
unspecified positions “close to the plates”, and taking the initially square
domain shape as an initial condition on h, the above equation may be integrated
to give

h ¼
1

1 þ t
: ð16Þ

This expression is also plotted in Figure 4 where happily the agreement for the
sheet thinning between the simple analytical (ANAL) and numerical (FEM)

Figure 2.
Initial finite element
mesh
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curves is pretty close. Of course, the difference between the two curves occurs
because the simple analytical model takes no account of the regions of high
meniscus curvature at the plates and hence cannot predict the sheet thinning
exactly.

3.2 Printing liquid from a trapezoidal cavity
Here the Lagrangian finite element algorithm is employed to simulate the
idealized 2-D transfer process, involving a Newtonian fluid pulled from an
upturned trapezoidal trench (which may be thought of as a 3-D cavity with a
large transverse aspect ratio) by a downwards moving substrate. The

Figure 3.
Result of filament

stretching simulation
when l=a ¼ 3:5: (a) finite
element mesh, (b) velocity

vectors
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trapezoidal design is commonly used in printing industries and so has been
chosen as a representative cavity for this problem. In our model (see Figure 5)
we initially assume the presence beneath the cavity of a liquid layer bounded
by two vertical free surfaces to overcome the significant theoretical difficulties
that are introduced if the cavity and substrate are initially in contact. The lower
surface is impulsively pulled downwards with constant speed U and the liquid
is set in motion subject to the following assumptions:

(1) There is perfect adherence between the liquid and the moving surface on
which there are two “static” contact lines. In real applications there will
possibly be some amount of slippage between liquid and solid at the

Figure 4.
The minimum filament
thickness as a function
of time calculated
numerically (FEM);
also plotted is the
approximate analytical
expression hmin ¼
1=1 þ t (ANAL)

Figure 5.
Cross-section of the
trapezoidal trench at
t ¼ 0:
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contact lines, though in practice substrates are suitably prepared so that
the printed liquids tend to adhere to them.

(2) Here exists local slip between the liquid and the trapezoidal cavity walls
at two dynamic contact lines – the specific modelling of which is
discussed below.

(3) Away from the edges of the trench the liquid motion is approximately
independent of the transverse coordinate z, up to the time when a thin
viscous sheet is formed, connecting liquid remaining in the trench to that
on the downward moving surface. The computation is terminated when
the minimum sheet thickness falls below a specified tolerance, prior to
which it is assumed that the influence of transverse edge effects and the
formation of instabilities can both be ignored within the main body of
the sheet.

Taking the speed of the lower surface, U, and the cavity depth, d, as typical
scales, then for a Newtonian fluid with viscosity m, density r and surface
tension t, non-dimensionalising the problem introduces the following groups:
Re ¼ rUd=m; Ca ¼ mU=t, and St ¼ rgd 2=mU : To incorporate the dynamic
contact lines we specify:

(1) an explicit linear slip velocity distribution, introducing an unknown slip
length, l, which must be estimated;

(2) a constant dynamic contact angle, uD (measured through the fluid).

Thus the contact lines are allowed to move along the sloped cavity walls,
though they are assumed to re-pin if they reach the bottom corners of the
cavity. There are, of course, a variety of possibilities for the dynamic contact
line treatment. In the absence of any experimental visualisations of micro-scale
cell emptying in printing processes we chose a straightforward constant angle
model, though it would not be difficult to refine the modeling in light of
experimental input at a later time (see Powell and Savage, (2001) for example).

Figure 6 shows the evolving liquid domain for a sample calculation in which
the following parameter values were used: a=d ¼ 1:0; St ¼ 0:1; Ca ¼ 0:1;
Re ¼ 1:0; uD ¼ 758. In the early stages of the motion the menisci become highly
curved and the effect of surface tension appears to dominate. As the liquid
domain extends the gravitational acceleration has more of an effect, the liquid
being forced downwards out of the cavity and into the sheet. In the later stages
of the simulation a thin liquid sheet forms, connecting the fluid that remains
in the cavity to a “sessile” drop forming on the moving surface. In this
calculation the contact lines do in fact reach the base of the cavity where it is
assumed that they re-pin. The simulation is terminated when the minimum
sheet thickness falls below 0.1, this is an arbitrary stopping point when it is
possible to obtain an estimate of the fraction of the initial liquid in the large
sessile drop by calculating the fraction below the minimum sheet (or “neck”)
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location – though it should be noted that the algorithm may in fact be
continued without trouble until the sheet is much thinner. For this sample
calculation approximately 93 per cent of the liquid lies below the neck when the
simulation is terminated.

Two snapshots of the computational mesh and velocity vectors, taken at
times t ¼ 0:072 and t ¼ 2:3; are shown in Figure 7. The mesh pictures
illustrate how a structured strategy using horizontal strips of elements is able
to effectively discretise the liquid domain from start-up through to the later
stages of the motion. Local mesh refinement is included in the dynamic contact
line regions in order to accurately resolve the velocity field. At t ¼ 2:3; when
the contact lines have re-pinned at the cavity base and the rounded sessile drop
is well formed, the mesh shown is constructed by equally spacing the nodes
along the free surface. This naturally results in a greater number of element
strips in the regions of rapidly changing velocity adjacent to the cavity base
and where the sheet opens out into the sessile drop. Furthermore, since each
horizontal element strip contains the same number of elements, we achieve a
much higher mesh refinement in the thin sheet region. The corresponding
velocity plot at t ¼ 2:3 shows that gravity is indeed the dominant effect in the
later stages of the simulation, with the highest velocities generated as fluid is
forced downwards through the neck region and into the drop. We note that
simulations are restricted to cases where uD is strictly greater than 458, since
the use of horizontal element strips in the discretisation cannot cope with free
surfaces that become multi-valued functions of the vertical coordinate, y. Of
course, if subsequent visualization experiments point to much smaller values of
the contact angle then a modified, more general meshing strategy can be

Figure 6.
Result of simulation
performed with the
following parameters:
a=d ¼ 1:0; uD ¼ 758,
Re ¼ 1:0; Ca ¼ 0:1;
St ¼ 0:1; the evolving

liquid domain is shown
at six different times:
t ¼ 0:072; 0.215, 0.931,

1.498, 1.868, 2.3
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implemented into the Lagrangian algorithm. Mesh resolution studies have been
conducted to determine levels of refinement resulting in mesh independent
results; at the point when a simulation is terminated a suitable mesh typically
contains around 600 elements.

Figure 8 shows the minimum sheet thickness as a function of time for
the same simulation. In the early stages of the liquid motion the rate of
domain thinning is large, but this rate gradually slows as the sheet forms
and continues to stretch. It is not possible to determine if the thin sheet is
close to rupture since there is no large negative gradient on the curve; indeed
this suggests that at later times any sheet rupture will be three-dimensional in
nature.

To demonstrate the predictive use of our algorithm to industrialists and
experimentalists seeking to control their liquid transfer process, the effect of
varying the separation speed of the substrate is explored. Denoting a reference

Figure 7.
Computational mesh and
velocity vectors shown at

times (a) t ¼ 0:072 and
(b) t ¼ 2:3
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substrate speed by U* which gives Reynolds, Stokes and capillary numbers
(Re*, St*, Ca*) say, then changing the speed to U ¼ nU* changes the
dimensionless groups to (n Re*, St*/n, nCa*). Here it is assumed that U* leads
to the following group values: Re* ¼ 1:0; St* ¼ 0:1 and Ca* ¼ 0:1 (with a=d ¼
1:0 and uD ¼ 758), and the effects of halving and doubling the separation speed
by taking n equal to 0.5 and 2, respectively, are considered. It is immediately
clear from Figure 9(a), which compares liquid domains when the minimum
sheet thickness falls below 0.1, that increasing U/U* from 0.5 to 2.0 leads to:

. a significant lengthening of the “final” fluid domain,

. a longer thin sheet region and

. a corresponding decrease in the fraction of liquid in the sessile drop.

These trends are quantified in Figures 9(b), which plots the final distance from
cavity to substrate, and 9(c), which gives the fraction of liquid lying below the
neck. The shortest limiting domain length and largest sessile drop fraction
(when approximately 94 per cent of the liquid lies below the neck) occur at the
lowest separation speed, which is in accord with intuition since the gravity-
driven cavity emptying has more time to occur than at a higher substrate
speed. This suggests that one may control the approximate sessile drop size to
a certain extent by simply varying the substrate speed, but a high speeds the
creation of a long thin sheet prior to rupture may be an undesirable side-effect.

Figure 8.
Minimum sheet
thickness versus time for
the sample calculation
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4. Conclusion
A Lagrangian finite element algorithm for solving time-dependent free surface
flows, which uses a structured meshing strategy to allow for large free
surface deformations, has been described and successfully applied to both a
stretching filament and a model printing problem. We stress that the cavity
emptying work presented here constitutes a first step towards simulating
and understanding the (fully three-dimensional) micro-scale liquid transfer
phenomena occurring in a range of industrial printing processes. Numerous
extensions to the present work are underway, including:

. introduction of an asymmetric separation between the cavity and
substrate to account for a roll-based printing configuration such as
gravure printing

. incorporation of non-Newtonian rheology to model more realistically the
types of inks used in printing processes

Figure 9.
The effect of U/U* upon

the cavity emptying
process (U* denoting a

reference substrate
speed – see text):

(a) “final” liquid domain
profiles, (b) “final”

distance from top of
cavity to moving

substrate,
(c) approximate final

liquid fraction in
“sessile drop”
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. consideration of process instabilities that occur due to imperfect cell
filling prior to printing.

An experimental program into the micro-scale printing of liquid from engraved
cells under different conditions is currently underway at the University of
Leeds. It is intended to report some of the experimental results together with
complementary numerical simulations in a future publication.

Note

1. Details of the individual contributions to the matrices M, C and F are given in numerous
papers, see, for example, ref (Bach and Villadsen, 1984).
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